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- Software Engineer Internship at .\\.WNUANCE
- Worked on an internal speech recognizer (supervised by
David Nolden, PhD)
- Cleaned up code
- Tested parts of decoding algorithm — on small and large
scale
- Implemented some new additions to the algorithm

- Learned a ton about Speech Recognition (SR)
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Speech Recognition (SR)

- Methods

- Statistical SR

- End-to-End (E2E) SR
- Algorithms

- Processing
- Decoding
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The overall goal of SR is to apply Bayes’ Theorem

optimal words = arg max{p(words given speech)}
words

= arg max{p(speech given words) - p(words)}
words

et = AR - R
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Statistical SR - Processing

Some comments...

- Want to minimize irrelevant information (outside noise)
- Fast Fourier Transform
- Normalize the transformed data
- Pitch
- Tone
- Vocal Tract Length
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Goal: p(x|w) - Given a word sequence w, find the probability of
observing the feature vector x.

- Use the pronunciation dictionary to create "subwords” and
map them to a Hidden Markov Model
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map them to a Hidden Markov Model

p(subwords | unknown Markov process)

568 B B

- Markov Property — to calculate probability we only need
the current state s; and previous state s;_

R
p(xw) ~ max [ | p(xilsi, w) - p(silsi-1, )

=1
Joo
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Statistical SR - Language Model

Goal: p(w) - Find the probability of occurrence of a given word
sequence w.

- Represent "words” using Markov processes
(m states and probabilities given!)

- The word probabilities are calculated by using negative
logarithm "scores”
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Statistical SR - Search (Decoding)

Goal: wop: — Find the optimal set of words given the
conditional feature probability (AM) and word probability (LM).

- Combine AM and LM information into a single search
space graph where probabilities are represented as
negative logarithm scores
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Statistical SR - Search (Decoding)

Goal: wop: — Find the optimal set of words given the
conditional feature probability (AM) and word probability (LM).

- Combine AM and LM information into a single search
space graph where probabilities are represented as
negative logarithm scores

Wopt = arg max{p(x|w) - p(w)} = arg min{LMscore + AMscore }
w

- Perform beam search, a greedy graph search algorithm
- Scores need to be normalized® otherwise shorter
sentences will have much higher scores compared to
longer sentences at sentence level:

(5+1sh*

(5+ 1) %

length penalty =
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Statistical vs. End-to-End SR

- Despite the immense complexity, statistical SR is
interpretable (confidence intervals for words)

- However, end-to-end SR is much easier to implement (not
necessarily train) and rivals the speed of statistical SR

- Currently, end-to-end SR seems to be replacing the
traditional statistical approach.
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