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Introduction

• Software Engineer Internship at

• Worked on an internal speech recognizer (supervised by
David Nolden, PhD)

• Cleaned up code
• Tested parts of decoding algorithm – on small and large
scale

• Implemented some new additions to the algorithm

• Learned a ton about Speech Recognition (SR)
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Introduction

Speech Recognition (SR)

• Methods
• Statistical SR
• End-to-End (E2E) SR

• Algorithms
• Processing
• Decoding
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Statistical SR1

The overall goal of SR is to apply Bayes’ Theorem

optimal words = argmax
words

{p(words given speech)}

= argmax
words

{p(speech given words) · p(words)}

wopt = argmax
w

{p(x|w) · p(w)}
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Statistical SR1

Acoustic signal
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Statistical SR1

Acoustic signal

Processing
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Statistical SR1 – Processing

Some comments...

• Want to minimize irrelevant information (outside noise)

• Fast Fourier Transform

• Normalize the transformed data

• Pitch
• Tone
• Vocal Tract Length
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Statistical SR1 – Acoustic Model

Goal: p(x|w) – Given a word sequence w, find the probability of
observing the feature vector x.

• Use the pronunciation dictionary to create ”subwords” and
map them to a Hidden Markov Model

p(subwords | unknown Markov process)

• Markov Property – to calculate probability we only need
the current state st and previous state st−1

p(x|w) ≈ max
s

k∏
i=1

p(xi|si,w) · p(si|si−1,w)
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Statistical SR1 – Language Model

Goal: p(w) – Find the probability of occurrence of a given word
sequence w.

• Represent ”words” using Markov processes
( states and probabilities given!)

• The word probabilities are calculated by using negative
logarithm ”scores”
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Statistical SR1 – Search (Decoding)

Goal: wopt – Find the optimal set of words given the
conditional feature probability (AM) and word probability (LM).

• Combine AM and LM information into a single search
space graph where probabilities are represented as
negative logarithm scores

wopt = argmax{p(x|w) · p(w)} = argmin
w

{LMscore + AMscore}

• Perform beam search, a greedy graph search algorithm

• Scores need to be normalized3 otherwise shorter
sentences will have much higher scores compared to
longer sentences at sentence level:

length penalty = (5+ |S|)α

(5+ 1)α
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End-to-End SR2
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Statistical vs. End-to-End SR

• Despite the immense complexity, statistical SR is
interpretable (confidence intervals for words)

• However, end-to-end SR is much easier to implement (not
necessarily train) and rivals the speed of statistical SR

• Currently, end-to-end SR seems to be replacing the
traditional statistical approach.
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